Studies in Chaos and Finance: Chapter II

In the previous chapter we proposed the Ornstein-Uhlenbeck process as the foundation for our stochastic model:

{\displaystyle dx^{i,j}_t = \alpha x^{i,j}_tdt + \tilde{W}(z_i, z_j) }     (18)

The results derived in (16) follow a special case of state variables x and y expressed in terms of standard normal variables z_1 and z_2. Using the Cholesky decomposition of a covariance matrix \Sigma:

{\displaystyle \Sigma = \textbf{L} \textbf{L}^{T} }     (19)

we can show that

{\displaystyle \Sigma =      \begin{bmatrix}         \sigma_{1} & 0 \\         0 & \sigma_{2}     \end{bmatrix}     \begin{bmatrix}         1 & \rho \\         \rho & 1     \end{bmatrix}     \begin{bmatrix}         \sigma_{1} & 0 \\         0 & \sigma_{2}     \end{bmatrix} \\     =      \begin{bmatrix}         l_{11} & 0 \\         l_{21} & l_{22}     \end{bmatrix}     \begin{bmatrix}         l_{11} & l_{12} \\         0 & l_{22}     \end{bmatrix}. }     (20)

Solving for L we get:

{\displaystyle l_{11} = 1, \indent l_{21} = \rho, \indent l_{22} = \sqrt{1 - \rho^2} }     (21)

Now we can express these variables in terms of L and the standard normal variables:

{\displaystyle \begin{aligned}         x &= \sigma_1 l_{11} z_1 = \sigma_1 z_1 \\         y &= \sigma_1 (l_{21} z_1 + l_{22} z_2) = \sigma_2 (\rho z_1 + \sqrt{1 - \rho^2} z_2)     \end{aligned} }     (22)

matching the stated forms in (12) and (13). The result in (22) will be applied in its general form when solving the n-state extension of our SDE in (18). It will help to rearrange the expression into its proper differential form with an additional term, \boldsymbol{\mu}, to account for the rate at which our stochastic process changes with time

{\displaystyle \dot{\textbf{x}}(t) + \textbf{A} (\textbf{x}(t) - \boldsymbol{\mu}) = \tilde{W}(\mathbf{z}) }     (23)

where,

{\displaystyle \frac{\partial {\textbf{x}}(t)}{\partial t} = \begin{bmatrix} \frac{\partial x_1(t)}{\partial t} \\ \frac{\partial x_2(t)}{\partial t} \\ \vdots \\ \frac{\partial x_i(t)}{\partial t} \end{bmatrix}, \indent \textbf{A} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1j} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2j} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{i1} & \alpha_{i2} & \cdots & \alpha_{ij} \\ \end{bmatrix}, \indent \boldsymbol{\mu} = \begin{bmatrix} \mu_{11} \\ \mu_{21} \\ \vdots \\ \mu_{i1} \end{bmatrix}. }     (24)

Note that \textbf{A} is an upper triangle matrix:

{\displaystyle \textbf{A}_{ij} =      \begin{cases}         a_{ij}, & \text{if } i \leq j \\         0, & \text{if } i > j     \end{cases} }     (25)

This is what is known as a Linear First Order Inhomogeneous Stochastic Differential Equation with function coefficients written as

{\displaystyle \frac {\partial x(t)}{\partial t} + P(t) x(t) = Q(t) }     (26)

and can be solved by its general solution

{\displaystyle e^{-\int_ {\:}^{t} P(t) \, dt} \left[ {\int_ {\:}^{t} e^{\int_ {\:}^{\lambda} P(\epsilon) \, d\epsilon} Q(\lambda)\, d\lambda} + t_0 \right] }     (27)

where e^{\int_ {\:}^{t} P(t) \, dt} is the integrating factor. Plugging (18) into our solution we have

{\displaystyle \begin{aligned}         \textbf{x}(t) = \boldsymbol{x_0} e^{-\textbf{A} t} + \boldsymbol{\mu} (\textbf{I} - e^{-\textbf{A} t}) - e^{-\textbf{A} t} \int_0^t \boldsymbol{W}_s^T (e^{\textbf{A} s} \circ \Sigma^{-1}) \boldsymbol{W}_s \, ds \\     \end{aligned} }     (28)

given \boldsymbol{x_0} \in \mathbb{R}^{n \times 1}, A \in \mathbb{R}^{n \times n}, \boldsymbol{\mu} \in \mathbb{R}^{n \times 1} and identity matrix I \in \mathbb{R}^{n \times n}. The deterministic part of the (28) is rather trivial. In order to address the non-deterministic integrands, however, requires working knowledge of Itô Calculus. In the next chapter we will lay out the logic to make sense of these integrals.

Leave a comment